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Abstract

The well-known Stormer-Cowell class of linear k-step methods

for the solution of second order initial value problems suffer

from orbital instability. The solution of a problem describing a

uniform motion in a circular orbit, spirals inward. Several

modifications were suggested, some require the a-priori knowledge

of the frequency. Here we develop a method based on the conser-

vation of energy and momentum. This method overcomes the

aforementioned difficulty.
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1. Introduction

In this paper we develop a method for the numerical solution

of the equations of motion of an object acted upon by several

gravitational masses. In general, the motion can be described by

a special class of second order differential equations, namely

y"(x) = f(x,y(x)) . (1)

There exist methods of Runge-Kutta type which tackle this

problem directly (Collatz [8, p. 61], de Vogelaere [23], Scraton

[20] and others). Also, linear multistep methods of the form

k k'= h2
O.jYn+j = Sjfn+j (2)

j=0 J=o

exist. See, for example, Henrici [11, p. 289], Lambert [13, p.

252] and others. One of the authors has developed hybrid methods

for such classes (Neta and Lee [15], Neta [16, 18]).

The direct application of methods of class (2) to problem

(1), rather than the application of a conventional linear

multistep method to an equivalent first-order system is usually

recommended (Ash [1)).

Special methods based on a-priori knowledge of the frequency

were developed by Bettis [3], Steifel and Bettis [22], Gautschi

[10], Neta and Ford [17], Neta [19], van der Houwen and Sommeijer

(12], Lyche [14] and Sommeijer et al [21).
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To avoid the use of the frequency other methods were

developed satisfying the so-called P-stability. This idea of P-

stability was introduced by Lambert and Watson [13). They showed

that such methods are necessarily implicit and cannot have order

greater than two. Chawla [5) and Cash [4] independently showed

that this order-barrier can be crossed over by considering hybrid

two-step methods. Other P-stable methods were developed by

Costabile & Costabile [9], Chawla [6], Chawla and Rao [7] and

others.

Our idea here is to develop a new method to approximate the

solution of the two body problem. This scheme will conserve both

the energy per unit mass and the specific angular momentum of the

system.

In the next section the method is developed for the

perturbation free flight. Numerical experiments with the scheme

will be described in the last section.
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2. Development of the Method

In this section we describe our new scheme to solve the

following system of equations

d2x k (3)
-2 2 2 3/2 (3dt (x+y)

2
2 2 2 3 (4)

dt (x2+y2)3/2 3'

where k = 3.9877 1014 m3 sec - 2 is the gravitational parameter.

It is well known that Cowell's method gives a numerical

solution that spirals inward. Encke's method improves this

result but requires more work [2].

It can be easily shown (see e.g., Bate et al. [2]) that the

energy and momentum are conserved for a perturbation free flight.

The conservation of these quantities will be used to obtain the

fast changing variable. It is thus important to rewrite the

system in polar coordinates

d2r r d2 k (5)
a- jt 2(5dt r

d 2 e 2 dr dO (6)
2 rdt d-at

The radius r does not change much in time and thus we can use any

method; here we use a second order Taylor series method. The

4



value of e corresponding to r will be obtained by integrating the

relation (conservation of energy per unit mass)

dr 2 + d@2 dr 2 +dr9) 7
(4-) ' + (r 4--) (SL )2 + (r(O) d-I }2 (7)

t 0 t=0

To be more specific, our method approximates r using

r(ti+l) = r(ti) + r(t i ) (,t) + r(t i ) (At) (8)

where

i(ti+l) = r(ti) + r(i) (It) (9)

and r(t) is obtained from the differential equation. In a

similar fashion we find

1(t = (t + -(t i ) (It) + ( I t)2 (10)

where

(t i )  2(C + k/r (t 2e~. /~.) - r (ti)/r(t i ) (11)

and e(ti) is obtained by differentiating the above relation.

The results of this method were compared to Taylor series

method for both r and e where now e is evaluated from an equation

similar to (9).



Remark: It should be clear that this idea can be used for any
conservative system. One uses the conservation of some quantity
to obtain an approximate value for the faster changing component.
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3. Numerical Experiments

In this section we solve the equations of motion (3)-(4)

combined with the initial values

r(0) = R + 105

r(0) = 0 (12)

e(0) 0

e(0) =8000/r(0)

where R = 6.371x106 is the radius of earth.

In the first table we compare the results of our method with

Taylor series using t = 1 sec. As can be seen in the table, the

value of r at the end of each period is nearly constant with our

method but decreases as the number of periods increases with

Taylor series method.

TABLE 1

At the 7 Energy per Specific angular
end of r (10 m) unit mass momentum
Period Taylor New (108 m2/sec 2 ) (1011 m2/sec)

0 .6471 .6471 -.2962 .5277

5 .6320 .6476 -.3019 .5127

10 .6173 .6482 -.3077 .5078

15 .6030 .6487 -.3135 .5029

20 .5890 .6493 -.3194 .4982

30 .5622 .6503 -.3313 .4888

40 .5367 .6513 -. 3433 .4798

50 .5123 .6523 -.3557 .4710

60 .4891 .6533 -.3683 .4624

70 .4667 .6543 -.3811 .4540
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The energy per unit mass E and the specific angular momentum are

given by

1 + 
E (r + (re)) - -1

(13)

P = r e - re

In our example both the energy and momentum are conserved.

In the following three figures the radius r, the energy per

unit mass E and the specific angular momentum P were plotted at

the end of every 10 periods. It is clear that the relative

change in r values after 70 periods using Taylor series method is
L

more than 25 times larger compared to our new method. The energy

L and momentum were kept constant by the new sc eme whereas the

Taylor series method shous a relative loss of 28% in energy and

12% in momentum at the end of 70 periods.

Remark: Note that our method is explicit whereas the P-stable

methods suggested by Lambert and Watson [13] are implicit.
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